涡轮叶片是动力设备的关键部件,其结构与材料的不断改进是人类提高能源利用效率、获得高性能装备(发电设备)和产品(如北京)的关键。由于其处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。因此,其制造技术成为国内外近20年来极为关注的重大技术问题。科学家与工程技术人员一直在不懈地探索叶片设计、材料与制造的科学原理和实现技术。涡轮叶片的性能水平(特别是承温能力)成为热动力设备先进程度的重要标志,从某种意义上讲,也是制造技术水平的显著标志之一。随着我国对能源和动力装备发展的高效节能需求不断增长,叶片制造已经成为我国热动力机械发展的主要瓶颈。随着叶片结构设计日趋复杂和对材料热性能要求的提高,传统的叶片制造方法受材料与制造技术的制约,已难以满足新型叶片的制造要求。
涡轮叶片制造工艺的现状
为解决叶片承温能力差和热强度低的问题,制造技术基本上沿着冷却结构制造和叶片材料高温性能提高2个方向发展。在复杂冷却结构的成形方面,近几年美国与俄罗斯采用了发汗冷却和层板冷却技术,进一步提高了冷却效率;但是如何高质量低成本地制造出用于发汗冷却的双层壁已成为制约这种冷却技术的一个主要因素。此外,冷却介质也发生着变化:由空气冷却转变为空气和蒸汽双工质冷却。双工质冷却方式的发展,对叶片制造又提出了新的挑战,即如何制造出2套空间交错的冷却通道。涡流冷却和气膜使得结构更加复杂,特别在叶片的壁厚和微细流道上,目前的发汗冷却叶片对壁厚和气流道的要求在0.5mm数量级,因此在制造技术上就要完成多尺度的结构制造(叶片的外形和微小的流道结构),这给制造技术提出了巨大的挑战。
目前涡轮叶片的主要制造工艺是熔模铸造。其工艺流程主要包括型芯模具的设计与制造、压制型芯、蜡模模具的设计与制造、装配注蜡、涂浆制壳、干燥型壳、脱蜡、烧结、浇注金属、脱芯、激光打孔等环节。该工艺在大批量生产涡轮叶片方面有成形精度高、尺寸稳定等优点,但仍有以下几方面的不足:产品开发周期长、成本高;工艺过程复杂,控制难度大,不利于产品的更新换代;难以实现空间交错的空心叶片的制造;型芯型壳分开成形,装配时易产生定位误差,叶片易穿孔,成品率低。
为了制造具有空间交错特点的冷却通道,俄罗斯全俄航空材料研究院提出了型芯镶嵌技术,它的特点是双层壁,叶身上的细孔完全由组合的陶瓷型芯形成。但是型芯镶嵌技术存在很多难点,例如需开发数量众多的用于制作细小型芯的模具;镶嵌组合过程中,不易准确定位,组合难度大等。
为了实现发汗冷却技术,美国allison公司开发了铸造冷却lamilloy技术,lamilloy层板在金属片上刻蚀出孔和通道,然后把金属片焊接在一起,形成高效冷却的层板合金。美国ge公司采用先制造出单晶空心并且带冷却通道的叶片框架,然后用可清除掉的填充剂充填冷却通道,接着用电子束物理气相沉积(eb-pvd)的方法形成表面层,最后将充填剂除掉,就形成了空心、双层壁的发汗冷却叶片。这种制造方法在沉积的表面层中,疏松高达7%,这一问题目前还没有解决;此外,空心叶片骨架的材料和沉积的表面层材料的热膨胀不一致,易导致叶片断裂。
随着快速成型技术在精密铸造领域的应用发展,可以用快速成型制造的原型替代蜡型,在其表面上涂挂耐火材料,然后焙烧,使原型材料烧蚀气化后得到铸壳,用于金属零件的烧注成形。快速成型技术也被用于直接成型陶瓷铸型。例如:dtm公司研制了包覆树脂的陶瓷粉末材料用选择激光烧结(sls)工艺成形并经后处理,制成了用于熔模铸造的陶瓷型壳。德国generis公司的工艺路线是将砂粒铺平之后,先用多通道喷头向砂床均匀喷洒树脂,然后由一个喷头依据轮廓路径喷射催化剂,催化剂遇树脂后会发生胶联反应,使铸型层层固化堆积成形。美国soligen公司根据三维打印(3dp)原理开发的直接型壳铸造工艺以陶瓷粉末为造型材料,粘结剂选用硅溶胶。这种技术无需任何模具、夹具,可以快速成型复杂形状的陶瓷铸型;但是,用这种技术成型的铸型尺寸精度、表面质量以及铸型的中高性能不高,不能满足叶片铸造的要求。西安交通北京结合叶片熔模铸造技术、快速成型技术、凝胶注模技术,提出了空心涡轮叶片整体式陶瓷铸型铸造工艺。整体式陶瓷铸型是指型芯型壳使用相同的材料,同时成形,无需组合装配。这些都为复杂空心叶片制作探索了新的工艺方法。
基于光固化(sl)原型的空心叶片内外结构一体化制造方法
光固化快速成形(stereolitho-graphy,sl)技术是目前快速成形技术中,成形精度最高的方法。空心叶片内外结构一体化制造工艺的具体流程如图1所示。具体包括:(1)在叶片三维模型的基础上加上控制坯体外型的外壳、冷浇注系统和热浇注系统,冷浇注系统用于陶瓷浆料灌注,热浇注系统用于浇注高温合金。(2)采用sl技术成型上述树脂原型。(3)将配好的陶瓷浆料灌入树脂中成型。(4)进行陶瓷坯体干燥,脱脂,烧结。(5)烧注金属。(6)去壳,脱芯。
结束语
(1)以光固化树脂原型为基础,结合凝胶注模成形技术,用于精密成形燃气轮机叶片的型壳型芯整体式陶瓷铸型制造方法,实现了激光固化树脂原型向金属叶片的快速转换,克服了传统陶瓷铸型组合式制造工艺的缺点,保证型芯、型壳相互间的位置精度,提高了薄壁叶片生产合格率;同时,省去了型芯坯体脱模、型芯和蜡模压型或型芯之间组合等工艺环节,简化了复杂叶片制造工艺。
(2)提出了湿态陶瓷坯体冷冻干燥工艺,获得了近零的干燥收缩工艺措施,避免了干燥应力和裂纹的产生,揭示了其内在机理;研究了不同物料组成的陶瓷坯体在烧结过程中的热变形规律,并通过物料的控制和合理的烧结工艺实现近零烧成收缩;烧成收缩率小于0.5%,高于国内已有数据,保证了整体式铸型的完整性。
(3)研究了光固化原型热膨胀量、热应力与升温速度之间的规律,制订了合理的热解工艺,安全地烧蚀了树脂原型,避免了陶瓷铸型开裂。
(4)对陶瓷浆料配方和烧结工艺进行了优化,通过浸渍钇溶胶、二次烧结强化了铸型的高温性能,并研究了微观结构、物相组成与陶瓷铸型性能之间的内在规律。测试结果表明,在1550℃的高温下,挠度可小于1.0%。
(5)制作出了具有复杂冷却结构和叶片壁面上变截面气膜孔的铸型,为新型叶片制造提供了新方法。